Imperial

You need fresh air, so does your home.

Imperial Peace of Mind

All Imperial products are backed by the best limited warranty in the industry, for your peace of mind.

You benefit from a lifetime warranty on the core, a 10-year warranty on our ventilation motors and a 5-year warranty on all other components. So you can breathe easy.

Heat Recovery Ventilator PH Series (PH 7.15 and PH 10.22)

Imperial

Features & Benefits

DuoTrol balancing system

Silent and economical... By reducing motor speed to balance the unit, you avoid the noise that would

be produced by balancing dampers. In addition, with this technology the unit will consume less energy.

SPM attachment system

The entire line of Imperial HRV/ERV products is designed for installation by a single person. "Single Person

Mounting" will enable you to save time and effort by offering you a variable attachment system.

6" (diam.) collar system (Patent Pending)

Quick and simple to install thanks to our revolutionary "Insert Slide and Fix"

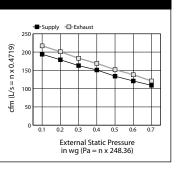
collar system. The "ISF" 6" (diam.) collar system enables you to manipulate duct within your reach and then insert by sliding it in place, for a better and quicker installation.

Range of controls For optimal performance of your HRV/ERV system.

The entire range of Imperial controls is offered with features making your

ventilation system simple, easy to operate and backed by a 5-year limited warranty.

Choose from: RD-1, RD-2, RD-3P, RD-4P (shown above) and T-3 (Push-Button Timer)



High-Performance motors

All Imperial products are designed with highperformance and reliable motors for your comfort and peace of mind. Factory

sealed and dynamically balanced, our motors are maintenance-free for years to come.

Ven	tilation	Perfo	rman	ce PH	7.15			
External Static Pressure		Net Supply Air Flow			Gross Air Flow Supply		Gross Air Flow Exhaust	
Pa	in. wg	L/s	CFM	L/s	CFM	L/s	CFM	
25	0.1	91	193	91	194	103	217	
50	0.2	84	178	85	179	95	201	
75	0.3	77	163	77	163	86	183	
100	0.4	71	150	71	151	80	169	
125	0.5	63	133	63	134	71	152	
150	0.6	57	120	57	121	66	138	
175	0.7	51	109	51	109	57	121	

	al Static ssure		Supply Flow		Air Flow oply		Air Flow aust			■ -Supply	/ - □-E:	khaust		
Pa	in. wg	L/s	CFM	L/s	CFM	L/s	CFM	_	300					Γ
25	0.1	117	248	118	250	130	277	= n x 0.4719)	250				_	T
50	0.2	108	229	109	231	119	253	4.0	200		-		\triangleright	F
75	0.3	102	218	103	220	110	234	Ē	150					Ľ
100	0.4	94	200	95	202	101	216	-/s	100					
125	0.5	85	181	86	183	92	197	cfm (L/s	100					Γ
150	0.6	77	163	78	165	82	175	Ъ	50					t
175	0.7	69	146	70	148	71	151		0	0.1 (0.2 0	.3 0.	4 0).5
HVI												nal Sta ı (Pa =		

E	ner	ду Р	erfo	orm	ance	PH 7.	15
	Sup Tempe		Net Air Flow		Power Consumed	Sensible Recovery	Apparent Sensible
	°C	°F	L/s	CFM	Watts	Efficiency	Effectiveness
5	0	32	31	65	72	66	75
HEATING	0	32	39	83	80	63	72
₹	0	32	50	107	94	60	67
Ξ	-25	-13	36	76	72	56	73

Er	nerg	ду Р	PH 10.22				
	Sup Tempe			et Flow	Power Consumed	Sensible Recovery	Apparent Sensible
	°C	°F	L/s	CFM	Watts	Efficiency	Effectiveness
5	0	32	55	118	106	61	71
HEATING	0	32	75	160	132	58	65
Ε	0	32	87	185	150	55	62
Ξ	-25	-13	57	120	105	58	72

SPECIFICATIONS	PH 7.15	PH 10.22
Size	23%" x 21½" x 11%"	23%" x 21½" x 16½"
Weight	50 lbs (22.68 Kg)	65 lbs (29.48 Kg)
CFM	30 to 160	50 to 220
Type of heat exchanger	cross-flow (Polypropylene)	cross-flow (Polypropylene)
Exchange surface	104 ft ²	150 ft ²
Voltage	120 VAC @ 60 Hz	120 VAC @ 60 Hz
Amperage	1.5 A	1.5 A
Defrost type	Evacuation	Evacuation
Certification	HVI, _c CSA _{us}	HVI, _c CSA _{us}
	211/2"	211/2"
Also available in PE Series (Energy Reco	very Ventilator). Ideal for warm and humid climates.	

Imperial Air Technologies 480 Ferdinand Blvd., Dieppe, NB Canada E1A 6V9

Toll free: 1 888 724-5211 Fax: 1 (506) 388-4633

Visit us at: www.imperialgroup.ca

♦ HRAI

You can find Imperial Indoor Air Quality products at the following distributor:

